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Nonlinear Analysis of Concrete Structural Components Using
Co-axial Rotating Smeared Crack Model

Mohammad Amin Hariri Ardebili, S. Mahdi S. Kolbadi, Masoud Heshmati and Hasan Mirzabozorg
Department of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran

Abstract: Simulation of concrete behavior in structural components and estimation of real crack profile under
static and dynamic loads 1s one of the most mteresting fields in structural engineering. In the present study,
a co-axial rotating smeared crack model is proposed for mass concrete in 3D space. The advantages of this
model are using variable shear transfer coefficient which is updated in each load step; utilizing an advanced
failure criterion for concrete and ability of modeling concrete cracking n tension and also crushing in
compression. The proposed model 1s verified considering concrete beams under concentrated loads and
comparing the results with those available in the literature. ITn addition, a finite element model of prototype
gravity dam-reservoir-foundation system 1s provided in order to mvestigation the nonlinear dynamic behavior
of large concrete specimens considering fluid-structure-interaction. The responses of the dam as well as crack
profiles are compared for constant and variable shear transfer coefficients under various types of dynamic
loads. Results show great compatibility of numerical modeling and experimental tests. Tn addition, results
confirm mmportance of shear transfer coefficients in dynamic analysis of concrete gravity dams.
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INTRODUCTION

Modeling behavior of concrete materials in structural
components 18 one of the most mnteresting fields in
structural engineering. Complex models are required in
order to capture the nonlinear behavior that arises as the
structure 15 loaded. Several researchers have introduced
models in order to simulating the nonlinear behavior and
also failure of concrete under static and dynamic loads.
The methods based on Continuum Crack Model (CCM),
Discrete Crack Model (DCM), Interface Crack Approach
(ICA) and the method of constrains are samples of most
favorite methods for numerical simulation of concrete
behavior. Utilizing these methods in conjunction with
analytical solutions depends on the complexities of the
structures, material properties and the boundary
conditions. Numerical models such as finite element;
finite difference; finite volume; extended finite element
and mesh free approaches are common methods for
simulation of structural components and their behavior
(Yuet al, 2008).

The DCM requires monitoring the response and
modifying topology of the mesh corresponding to the
current crack configurations at each state of loading.
However, this approach explicitly represents the crack as
a separation of nodes which is a more realistic

representation of the opening crack. This model is also
useful when the location and direction of cracks 1s
recognizable before loading the structure. Hohberg (1990)
studied the mechamsm of jomt elements under water
pressure using DCM. Ahmadi and Razavi (1992)
represented a finite element model of discrete cracks for
modeling joints. They considered perfectly elastic-plastic
behavior for joint in tension and linear elastic behavior in
compression and shear. Ahmadi ef al. (2001) mtroduced
a nonlinear jomt element with coupled tension-shear
behavior for analysis of arch dams. Lotfi and Espandar
(2004) used discrete crack method, non-orthogonal
smeared crack and combination of them for seismic
analysis of dams. Du and Tu (2007) combined explicit
finite element method with transmitting boundary to study
the effects of contraction jont opening in concrete dams.

The methods based on CCM are divided to two major
groups, le., damage mechamcs approach and smeared
crack approach. In the smeared crack approach cracks and
joints are modeled in an average sense by appropriately
modifying the material properties at the integration points
of regular finite elements. Smeared cracks are convenient
when the crack orientations are not known beforehand,
because the formation of a crack involves no re-meshing
or new degrees of freedom.
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Some researchers applied
mechanics to study the concrete behavior such as
Sumarac et al. (2003), Labadi and Hammachi (2005),
Contrafatto and Cuomo (2006), Grassl and Iirasek (2006),
He et ol (2006), Cicekli et al. (2007) and Khan et of. (2007).
Also, Mirzabozorg et al. (2004) utilized damage mechanics
approach to conduct seismic nonlinear analysis of
concrete gravity dams m 2D space including
dam-reservoir interaction effects. Ardakanian ez al. (2006)
considered nonlinear seismic behavior of mass concrete
i 3D space which is based on an amsotropic damage
mechamics model.

Failure based on the smeared crack approach and
classification of its branches were studied by Malvar and
Fourney (1990), Weihe e al. (1998), Mosler and Meschke
(2004) and Phama et al. (2006). Mirzabozorg and Ghaemian
(2005) developed a model based on smeared crack
approach in 3D space. In their study, they analyzed 3D
models mcluding dam-reservorr interaction effects and
considered nonlinear behavior of the structure. In
addition, Mirzabozorg et «al (2007) investigated
non-uniform cracking in smeared crack approach for 3D
analysis of concrete dams and Mirzabozorg et al. (2010)
studied nonlinear behavior of concrete dams under
non-uniform earthquake ground motion records.

In the present study, a co-axial smeared crack model
was 1ntroduced n 3D space for crack analysis of concrete
structural components under static and dynamic
conditions. For this purpose an advanced failure criterion
is utilized. Finite element model of a set of beams are
studied for constant and variable shear transfer
coefficient conditions. In addition, capability of the
proposed method is investigated for considering the
behavior of coupled structure-fluid-soil system under
various load types.

continuum ~ damage

CONSTITUTIVE LAW FOR CONCRETE

The proposed method for crack analysis of concrete
structural components should be able to simulate the
behavior of the element in various states as following;
Pre-softening behavior, fracture energy conservation;
nonlinear behavior during the softening phase and finally
crack closing/reopeming behavior. The followmg
sub-sections represent a brief review on general concepts
of these stages.

Pre-softening phase: Generally, the relationship of the
stress and strain vectors at the pre-softening phase is
given as:

10} = [Dlaws. {8} (1)
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where, [D],.. 18 the elastic modulus matrix; {o} and {&}
are the vector of stress and strain components. The
modulus matrix in elastic condition maybe defined for
isotropic, orthotropic and anisotropic materials.

Softening phase: During the softening phase, the elastic
stress-strain  relationship is  substituted with an
anisotropic modulus matrix which comresponds to the
stiffness degradation level in the three principal
directions. In the present study, the secant modulus
stiffness approach, SMS, is umitized for the stiffness
formulation in which the constitutive relation is defined in
terms of total stresses and strains, shown in Fig. 1.

The stiffness modulus matrix based on the smeared
crack propagation model is given in Eq. 2. Tt is worth
noting that the extracted modulus matrix is co-axial with
the principal stramns in the considered location within the
cracked element:
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Fig. 1: SMS formulation of stiffness modulus matrix
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where, T, 1); and 1), are the ratio of the softened Young's
modulus in the three principal directions and the initial
isotropic elastic modulus and P,,, B;; and P,; are shear
re-tension factors comesponding to the principal
directions given as:
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The constitutive matrix given in Eq. 2 is transformed
to the global co-ordinate system as following:

(oL =[] [PL2 [1] ®)
where, [T] 1s the strain transformation matrix in 3D space.
Based on the maximum strain reached in each principal
direction, the secant modulus matrix is determined.
Increasing the normal strain in each principal direction
leads to reduction of the corresponding softened Young's
modulus. Finally, when the maximum strain reaches the
fracture strain, the considered Gaussian pomt within the
element in the corresponding direction is fully cracked
and its contribution in the stiffness matrix of the element
1s eliminated. Based on Eq. 2 to 5, any change in principal
strains or their directions in each Gaussian point leads to
an update requirement of the global constitutive matrix,
[DE™ . Satisfymg the energy conservation principle m
each Gaussian pomt leads to the fracture stram under
static and dynamic loads:

2G .G
g, =—Landg = ——F (6)

where, h, is the characteristic dimension of the considered
Gaussian point and 1s assumed equal to the cubic root of
the Gaussian point's volume contribution; 0, is the stress
corresponding to the softening strain and G; is the
specific fracture energy. The primed quantities show the
dynamic constitutive parameters.

The strain-rate sensitivity of fracture energy is
applied through a dynamic magmfication factor DMF,, so
that:

G, = DMFG, N

Failure criterion: The strength of concrete under
multi-axial stresses 1s a fumetion of the state of stress and

cannot be predicted by limitation of simple tensile,
compressive and shearing stresses independently of each
other. In the elasticity based models, a suitable failure
criterion is incorporated for a complete description of the
ultimate strength surface. Criteria such as yielding, load
carrying capacity and initiation of cracking have been
used to define failure (Babu et al., 2005). Many failure
criterions have been proposed for brittle material as well
as concrete. Some of more familiar criterions are
Mohr-Coulomb criteria, Drucker-Prager, Chen and Chen
(1975), Ottosen (1977), Hsieh ef al. (1982), Willam and
Warnke (1974), Menetrey and William (1995),
Sankarasubramanian and Rajaselcaran (1996) and Fan and
Wang (2002).

In the present study an advanced failure criterion is
used for initiation and propagation of cracks in concrete
structural components (Menetrey and William, 1995). In
the general form this yield function can be expressed as
follow:

f(g,p,e)Nif’f } +m

where, £ is hydrostatic stress invariant, p i1s deviatory
stress invariant, 0 is deviatory polar angle, r (0, e) 1s an
elliptic function, e describes the shape of the deviatory
trace, m represents the frictional resistance of maternal, ¢
15 cohesion of material and f'; is umi-axial compressive
strength of concrete. The main parameters in the above
equation are defined as follow:

P T g
JEf; r(e,e)+£fC, } 0o (8
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where, 1, 1s the first invanant of the Cauchy stress tensor;
I, and I, are the second and third invariants of the
deviatory part of the Cauchy stress tensor; 0y is principal
stress; S;, Sp Sy and Sy are deviatory stresses. In
addition, the elliptic function 1s in the form of Eq. 10, as
following:

4(1- & jeos B+ (2e-1)’
2(1-¢€*)cosb + (26—1)[4(1— e’ Jcos® 6.+ 5¢? —46:|U2

(10)

r(6,e)=
FORMULATION OF FLUID-STRUCTURE-
INTERACTION

The general coupled equation of motion for Fluid-
structure-interaction  (FSI) under dynamic loads 1s
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discussed in this section. Considering the coupled dam-
reservoir-foundation system, the governing equation
in the reservoir medium is Helmholtz equation from

the FHuler’s equation given as Ghaemian et al
(2003):
C? at?

where, p, C and t are the hydrodynamic pressure, pressure
wave velocity in liquid and time, respectively. Boundary
conditions required to apply on the reservoir medium to
solve Eq. 11 are explained Hariri-Ardebili and Mirzabozorg
(2010). The equations of the dam-foundation (as the
structure) and the reservoir take the form:
- o }

{r}-plof {0}

B MR HE _[I[SJ]J{E}‘{
(12)

where, [M], [C] and [K] are the mass, damping and
stiffness matrices of the structure meluding the dam body
and its foundation media and [G], [C'] and [K'] are
matrices representing the mass, damping and stiffness
equivalent matrices of the reservoir, respectively. The
matrix [Q] is the coupling matrix; {fi} is the vector
mcluding both the body and the hydrostatic force; {P}
and {U} are the vectors of hydrodynamic pressures and
displacements, respectively and {Ug} is the ground
acceleration vector.

FINITE ELEMENT MODELING AND CASE STUDIES

In order to investigate the ability of proposed method
i static and dynamic analysis of concrete structural
components two kinds of models were developed. The
first one 13 a simple notched beam under three-point
bending test and the second one is coupled prototype
gravity dam-reservoir-foundation system under a
combination of various load types. Figure 2 shows the
model used for the three-point bending test. Tt’s a
square-section concrete beam with an mitial notch depth
of 51 mm in its center while the depth of the beam 1s
102 mm (Malvar and Warren, 198%). The material
properties are as follow; E=21.7 GPa,v=0.2,f,= 2.4 MPa,
f,=29.0MPa and G;= 35 N m . Finite element model of
half of concrete beam with fine mesh is also depicted in
Fig. 2.

Figure 3 shows the finite element model and also
dimension of prototype gravity dam-reservoir-foundation
system. The model consists of solid elements for
simulation of body and mass-less foundation and also
fluid elements for modeling the reservoir. Boundary
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Fig. 2. Geometry and finite element model of single-edge-
notched beam subjected to three point bending
test

Fig. 3: Finite element model, dimensions and boundary
conditions in coupled system

conditions are also depicted in this Fig. 3. Matenal
properties of mass concrete in static and dynamic
conditions are as follow; Modulus of elasticity is 40 and
46 GPa, Poisson’s ratio is 0.2 and 0.14, density is
2640 kg m ™, tensile strength is 2 MPa and dynamic tensile
stress 18 3 MPa. Modulus of elasticity in foundation area
1s 30 GPa and Poisson’s ratio 18 0.2. Sound velocity in
water is assumed to be 1460 m sec™".

Three types of dynamic loads were used in present
study, 1.e., intensifying sinusoidal loading, increasing step
loading and real earthquake ground motion. The two first
load types were selected to investigation the pattern,
route and the type of cracking of huge mass concrete
specimen under dynamic loads mcluding fluid-structure
interaction. Acceleration time-histories of all three loads
are depicted in Fig. 4a-c. Damping was assumed to be 10%
of critical damping in all cases.

RESULTS AND DISCUSSION

Verification of proposed model: InFig. 5, the load versus
load-pomt deflection curves from the finite element model
15 compared with the experimental result of Malvar and
Warren (1988). Two type of smeared crack were assumed
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Fig. 4(a-c): Acceleration time-listories applied to the
coupled system (a) Intensifying sinusoidal
load, (b) Increasing step load and (¢) Real
earthquake ground motion
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Fig. 5: Load versus load-pomt deflection compared with
the experimental result for constant and varable
shear transfer coefficients

for each beams, 1.e., in the first approach shear transfer
coefficient 15 assumed to have two constant parameters
for open and closed cracks and in the second case
variable shear transfer coefficient is take into account in
smeared crack model. In the constant coefficient approach
the pre-assumed values m open and cracked conditions

225

f3-constant model

f3-variable model

Fig. 6: Final crack profile in concrete beam under the
concentrated load at the middle span

are 0.1 and 0.9, respectively. There 1s good agreement
between predictions of the two approaches through all
loading stages: elastic, hardening and softening. The
also agree very well with the
experimental result which demonstrates the soundness of
the present algorithm. The final crack profiles of concrete
beam are shown in Fig. 6. Although, the general pattern of
crack profiles based on constant and variable shear
transfer coefficients are close to each other, some
differences can be shown in final crack profile. The crack
is started from upper parts of the notch near the corner
and extended almost linearly toward the upper edge of the
beam.

numerical results

Concrete dam model and FST problem: In this section
application of proposed smeared crack model 1s
investigated for the problems consisting fluid-structure-
interaction. For this purpose the introduced coupled
system n previous section 1s selected as case study. The
modeled concrete structure is assumed to be a prototype
of a concrete gravity dam, its support assumed to be
modeling of foundation rock and finally the fluid is
considered as reservoir water.

So the dam-reservoir-foundation system 1s subjected
to various types of loading as mentioned before. In each
case the nonlinear responses of the system are compared
with reference linear responses. Three nonlinear models
are considered for each loading mn which the first two
ones use constant shear transfer coefficients for open and
closed cracks and the third one uses proposed rotating
smeared crack model with ability of updating shear
transfer coefficient i each load step of dynamic analysis.

Intensifying sinusoidal loading: Tn this section the results
of coupled system under an intensifying sinuscidal
loading are investigated. The values of shear transfer
coefficients for open and close cracks were assumed to be
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0.1 and 0.9 in the first case and 0.3 and 0.7 in the second
one. Figure 7 shows the time-history of crest displacement
in stream direction for various lmear and nonlinear
models. As it 13 clear using nonlinear model based on
smeared crack model lead to higher displacements than to
linear one. Because of continuously intensifying nature of
this loading the behavior of system gradually goes from
linear elastic range to nonlinear phase and finally leads to
global instability of the coupled system.

Based on this Fig. 7 up to time t = 1.36 sec all models
show the same behavior which shows that models are in
linear elastic range. After t = 1.36 sec the nonlinear
behavior of models are begin in the form of concrete
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Fig. 7. Crest displacement under mtensifying sinusoidal
dynamic load for linear and nonlinear models
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cracking. All three models have different behavior
showing the importance of shear transfer coefficient in
nonlinear analyses. The B-constant (0.1/0.9 values) model
fails earliest at the time t = 4.14 sec showing that in the
current model, assuming value near unit for shear transfer
coefficient in closed cracks condition and value near zero
in open cracks condition can lead to unrealistic results.
The P-constant (0.3/0.7 values) model 1s the second one
which fails under the same loading at time t = 4.28 sec.
Although this models endure more than previous one
under intensifying loading, it has limitations for fully
capture the nonlinear behavior of concrete under dynamic
loading. The third model in which p varies based on the
proposed model, experiences some large deformations up
to 28 mm in first 5 sec of dynamic load. However, there 1s
no global mstability in this case.

Figure 8a-d represent the non-concurrent envelope of
the first principal stress within the dam body. As it is
shown, considering that there 1s no linitation in linear
model its stresses are increased to 12.7 MPa which 1s
mainly concentrated near the toe and heel of base. Using
nonlinear models concentrate the area with high tensile
stress 1n dam-foundation mterface and also some areas
around the neck. Consequently theses areas have great
capability for cracking. The similarity of B-variable model
to P-constant (0.1/0.9 values) is more than B-constant
(0.3/0.7 values). Figure 9a-c show the propagation of crack
profile by mereasing the intensity of loading for nonlinear

(c) (d)
I 2207 2207
B 335829 335829
668351 [ 668851
\ 0.100E+07 £ O100E+07
L4y [ 0-133E+07 oy O-133E+07
A\ | O167E+07 0.167E+07
\ 0.200E+07 C1 0.200E+07
N 0.233E+07 ] 0.233E+07
\ I 0.267E+07 [ 0.267E+07
\ B 0.300E+07 B 0.300E+07

\

Fig. 8(a-d) Non-concurrent envelope of first principal stresses in dam body (a) Linear model, (b) p-variable model, (¢)

B-constant-(0.1/0.9) and (d) P-constant-(0.3/0.7)
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Fig. 9(a-c). Crack propagation in dam body and final crack profile in failure time (a) P-variable model, (b) B-constant-
(0.1/0.9) and (¢) P-constant-(0.3/0.7)

models. Also the final crack profiles are shown in this have close crack profiles and at t = 3.00 sec B-variable and
figure. As can be seen at t = 2.00 sec almost all models B-constant (0.1/0.9 values) models have considerable
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cracked element in neck area. For the final crack profiles all
models show complete cracking in base of the dam and in
neck area.

Tncreasing step loading: This sub-section is provides the
responses of dam-reservoir-foundation system under
mcreasing step-type loading. This load type 1s similar to
previous one by this way that both 1s mcreasing and 1s
different from that one considering that it applies
acceleration to system which is not damps rapidly.
Figure 10 shows time-history of crest displacement in
stream direction for linear and nonlinear models. As can
be seen using linear model generate uniform displacement
curve similar to input acceleration while the damping of
acceleration in the system 18 clearly recognizable. Based
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Fig. 10: Crest displacement under increasing step-type
dynamic load for linear and nonlinear models

(3 (b)

on these results the coupled system damps the input
acceleration in time interval about 0.33 sec. Comparing the
nonlinear models shows that B-variable model fails at
t = 6.14 sec while using P-constant-(0.1/0.9) leads to
failure of the system at t = 8.08 sec, respectively. In
addition based on B-constant-(0.1/0.9) model, the damping
of nput acceleration in nonlinear phase is done very
slowly.

Figure 11a-¢ represent the non-concurrent envelope
of first principal stress within the dam body under spet-
type loading. As it 13 shown considering that there 1s no
limitation m linear model its stresses are increased to
11.92 MPa which is mainly concentrated near the toe and
heel of base and also in middle parts of upstream face.
The stress envelopes of variable and constant shear
transfer coefficients are very close to each other, while
B-constant-(0.1/0.9) model generates more high stress
areas in base of dam. Figure 12a and b show the
propagation of crack profile at different times for nonlinear
models. As can be seen the final crack profile for the
B-variable model at time 8.94 sec and P-constant
(0.1/0.9 values) model at t = 8.54 sec are almost the same.
In addition for the lower times B-constant model generates
more damage in base of dam. There 1s no crack in neck
area under this type of loading.

Real ground motion loading: Figure 13 shows time-
history of crest displacement for linear and nonlinear
models using real ground motion. As can be seen because
moderate intensity of selected ground motion none of
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Fig. 11(a-¢): Non-concurrent envelope of first principal stresses in dam body (a) Linear model; (b) B-variable model and

(c) p-constant-(0.1/0.9)
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Fig. 12(a-b): Crack propagation in dam body and final crack profile in failure time (a) variable model and (b)
constant-(0.1/0.9)
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Fig. 13: Crest displacement under real ground motion for linear and nonlinear models
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Fig. 14(a-c): Non-concurrent envelope of first principal stresses in dam body (a) Linear model, (b) B-variable model and

{c) p-constant-(0.1/0.9)
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Fig. 15(a-b): Crack propagation in dam body and final
crack profile i failure time (a) P-variable
model and (b) p-constant-(0.1/0.9)

nonlinear-based models were failed Although, both
nonlinear models generate larger values for displacement
that to linear model, using P-constant-(0.1/0.9) model
leads to some larger displacement that to B-variable model
and two models have great consistency with each other.

Figure 14a-c represent the non-concurrent envelope
of first principal stress within the dam body under real
ground motion. Linear model experiences up to 15.53 MPa
tensile stress in toe of dam. The general templates of two
nonlinear models are very close each other and
overstressed area 1s concentrated mn base of dam at
vicinity of foundation. Figure 15a and b shows the
propagation of crack profile for nonlinear models under
real ground motion. In spite of the previous load types,
there is no continuously increasing loading in this
example. Like the Fig. 13 and 14, there 1s great sumilarity
between crack profiles not only for the final profiles but
also the propagation of crack based on two approaches
have almost same trend.

CONCLUSION

In the present study a co-axial rotating smeared crack
model was mtroduced for nonlmear behavior of mass
concrete 1 3D space. The advantages of proposed model
are, using variable shear transfer coefficient which is
updated in each load step; utilizing an advanced failure
criterion for concrete in 3D space and ability of this
method 1n simulation of cracking process in concrete with
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high accuracy. The proposed model was verified using
the three-point bending test of concrete beam. Results
show very good consistency between numerical analysis
and experimental test. On the other hand, finite element
model of prototype gravity dam-reservoir-foundation
system was provided in order to investigation the
nornlinear dynamic behavior of large concrete specimens
considering fluid-structure-interaction. Three types of
dynamic loading were selected for this purpose; i.e., two
increasing loads and one real ground motion record. The
results were compared for constant and proposed variable
shear transfer coefficients. It was found that generally
shear transfer coefficient affects the results of dynamic
analysis of concrete structures meaningfully. In high
mtensity levels of dynamic load, constant shear transfer
coefficient leads to early faillure of structure than to
variable coefficient model. Also both final crack profile
and the propagation of cracks within concrete specimens
are highly affected by shear transfer coefficient. Fmally it
was concluded that the proposed model can be used for
static and dynamic crack analysis of concrete structural
components considering the effects of fluid-structure-
mteraction and hydrodynamic pressure on specimen.
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